1732 CHAPTER 54. FUNCTIONAL ANALYSIS APPLICATIONS
54.3.4 A Scale Of Banach SpacesNext I will present an important and interesting theorem which can be used to prove equiv-alence of certain norms.
Theorem 54.3.25 Let A,B be sectorial for S−a,φ where −a < 0 and suppose D(A) =D(B) . Also suppose
(A−B)(−A)−α ,(A−B)(−B)−α
are both bounded on D(A) for some α ∈ (0,1). Then for all β ∈ [0,1] ,
(−A)β (−B)−β ,(−B)β (−A)−β
are both bounded on D(A) = D(B). Also D((−A)β
)= D
((−B)β
).
Proof: First of all it is a good idea to verify (A−B)(−A)−α ,(A−B)(−B)−α makesense on D(A) . If x ∈D(A) , then why is (−A)−α x ∈D(A)? Here is why. Since x ∈D(A) ,
x = (−A)−1 y
for some y ∈ H. Then
(−A)−α x = (−A)−α (−A)−1 y = (−A)−1 (−A)−α y ∈ D(A) .
The case of (A−B)(−B)−α is similar.Next for β ∈ (0,1) and λ > 0, use 54.3.25 to write∣∣∣∣∣∣(−A)β (λ I−A)−1 x
∣∣∣∣∣∣≤ C
∣∣∣∣∣∣(−A)(λ I−A)−1 x∣∣∣∣∣∣β ∣∣∣∣∣∣(λ I−A)−1 x
∣∣∣∣∣∣1−β
≤ C∣∣∣∣∣∣(−A)(λ I−A)−1
∣∣∣∣∣∣β ∣∣∣∣∣∣(λ I−A)−1∣∣∣∣∣∣1−β
||x||
≤ C∣∣∣∣∣∣I−λ (λ I−A)−1
∣∣∣∣∣∣β M
(λ +δ )1−β||x||
≤ C(
1+λ
(λ +δ )
)β M
(λ +δ )1−β||x|| ≡ C
(λ +δ )1−β||x|| (54.3.29)
where −a <−δ < 0 where C denotes a generic constant. Similarly, for all β ∈ (0,1) ,∣∣∣∣∣∣(−B)β (λ I−B)−1 x∣∣∣∣∣∣≤ C
(λ +δ )1−β||x|| (54.3.30)
Now from Theorem 54.3.17 and letting β ∈ (0,1) ,
(−B)−β − (−A)−β =sin(πβ )
π
∫∞
0λ−β((λ I−B)−1− (λ I−A)−1
)dλ