54.3. SECTORIAL OPERATORS AND ANALYTIC SEMIGROUPS 1733
=sin(πβ )
π
∫∞
0λ−β (λ I−B)−1 (A−B)(λ I−A)−1 dλ . (54.3.31)
Therefore, letting x ∈ D(A) and letting C denote a generic constant which can be changedfrom line to line and using 54.3.29 and 54.3.30,∣∣∣∣∣∣x− (−B)β (−A)−β x
∣∣∣∣∣∣≤ C
∫∞
0
1
λβ
∣∣∣∣∣∣(−B)β (λ I−B)−1 (A−B)(λ I−A)−1 x∣∣∣∣∣∣dλ
The reason (−B)β goes inside the integral is that it is a closed operator. Then the above
≤ C∫
∞
0
1
λβ (λ +δ )1−β
∣∣∣∣∣∣(A−B)(−A)−α (−A)α (λ I−A)−1 x∣∣∣∣∣∣dλ
≤ C∫
∞
0
1
λβ (λ +δ )1−β
∣∣∣∣∣∣(−A)α (λ I−A)−1 x∣∣∣∣∣∣dλ
≤ C∫
∞
0
1
λβ (λ +δ )1−β
1
(λ +δ )1−αdλ ||x||=C ||x|| .
It follows (−B)β (−A)−β is bounded on D(A).Next reverse A and B in 54.3.31. This yields
(−A)−β − (−B)−β =sin(πβ )
π
∫∞
0λ−β (λ I−A)−1 (B−A)(λ I−B)−1 dλ .
Letting x ∈ D(A) , ∣∣∣∣∣∣x− (−A)β (−B)−β x∣∣∣∣∣∣
≤ C∫
∞
0λ−β
∣∣∣∣∣∣(−A)β (λ I−A)−1 (B−A)(λ I−B)−1 x∣∣∣∣∣∣dλ
≤ C∫
∞
0
1
λβ (λ +δ )1−β
∣∣∣∣∣∣(B−A)(−B)−α (−B)α (λ I−B)−1 x∣∣∣∣∣∣dλ (54.3.32)
≤ C∫
∞
0
1
λβ (λ +δ )1−β (λ +δ )1−α
dλ ||x||=C ||x|| (54.3.33)
This shows (−A)β (−B)−β is bounded on D(A) = D(B) . Note the assertion these arebounded refers to the norm on H.
It remains to verify D((−A)β
)= D
((−B)β
). Since D(A) is dense in H there exists
a unique L(A,B) ∈L (H,H) such that L(A,B) = (−A)β (−B)−β on D(A). Let L(B,A) bedefined similarly as a continuous linear map which equals (−B)β (−A)−β on D(A) . Then
(−A)−β L(A,B) = (−B)−β
(−B)−β L(B,A) = (−A)−β