1758 CHAPTER 55. COMPLEX MAPPINGS

Now from 55.5.26 this is dominated by

exp(

π exp2(|H (0)|+24C ln

(1

1−θ

)))= exp

(π exp(2 |H (0)|)exp

(48C ln

(1

1−θ

)))(55.5.27)

Consider exp(2 |H (0)|). I want to obtain an inequality for this which involves β . Thisis where I will use the convention about the logarithms discussed above. From 55.5.25,

2 |H (0)|= 2

∣∣∣∣∣log

(√log( f (0))

2πi−√

log( f (0))2πi

−1

)∣∣∣∣∣

≤ 2

(ln

∣∣∣∣∣√

log( f (0))2πi

−√

log( f (0))2πi

−1

∣∣∣∣∣)2

+π2

1/2

≤ 2

∣∣∣∣∣ln(∣∣∣∣∣√

log( f (0))2πi

∣∣∣∣∣+∣∣∣∣∣√

log( f (0))2πi

−1

∣∣∣∣∣)∣∣∣∣∣

2

+π2

1/2

≤ 2

∣∣∣∣∣ln(∣∣∣∣∣√

log( f (0))2πi

∣∣∣∣∣+∣∣∣∣∣√

log( f (0))2πi

−1

∣∣∣∣∣)∣∣∣∣∣+2π

≤ ln(

2(∣∣∣∣ log( f (0))

2πi

∣∣∣∣+ ∣∣∣∣ log( f (0))2πi

−1∣∣∣∣))+2π

= ln((∣∣∣∣ log( f (0))

πi

∣∣∣∣+ ∣∣∣∣ log( f (0))πi

−2∣∣∣∣))+2π (55.5.28)

Consider∣∣∣ log( f (0))

πi

∣∣∣log( f (0))

πi=− ln | f (0)|

πi+

arg( f (0))π

and so

∣∣∣∣ log( f (0))πi

∣∣∣∣ =

(∣∣∣∣ ln | f (0)|π

∣∣∣∣2 +(arg( f (0))π

)2)1/2

(∣∣∣∣ lnβ

π

∣∣∣∣2 +(π

π

)2)1/2

=

(∣∣∣∣ lnβ

π

∣∣∣∣2 +1

)1/2

.

1758 CHAPTER 55. COMPLEX MAPPINGSNow from 55.5.26 this is dominated byexp (zexp2 (i100) +24CIn (, 1 3)))= exp (zexp (2|H (0)|) exp (48cin (, 1 3))) (55.5.27)Consider exp (2 |H (0)|). I want to obtain an inequality for this which involves B. Thisis where I will use the convention about the logarithms discussed above. From 55.5.25,ve(e5 1/2) +)5 1/2-1) +]2|H (0)| =2(Glog (f (0))»(|n(/IA[seo _ yaa) 42ni 2nilog (f (0))+ \/ 20IAlof) _,sae (| =Z™ ly BEEP< In (2( a ‘es(/(0) -1|)) 42n_ in( (8 log (f 4 + [280 2!) ) 42m (55.5.28)Consider atf(0)|log(F(0)) _ _ In| FO), , arg (F))Ni 4 1and so1/2Ti u 1/(ene7 1/2TUesl) _ (mice. sey")IA