55.5. THE PICARD THEOREMS 1757

Therefore, for z ∈ ∂B(0,θR) ,

|H (z)| ≤ |H (0)|+24C ln(

11−θ

). (55.5.26)

By the maximum modulus theorem, the above inequality holds for all |z|< θR also.Next I will use 55.5.23 to get an inequality for | f (z)| in terms of |H (z)|. From 55.5.23,

H (z) = log

(√log( f (z))

2πi−√

log( f (z))2πi

−1

)and so

2H (z) = log

(√log( f (z))

2πi−√

log( f (z))2πi

−1

)2

−2H (z) = log

(√log( f (z))

2πi−√

log( f (z))2πi

−1

)−2

= log

(√log( f (z))

2πi+

√log( f (z))

2πi−1

)2

Therefore, (√log( f (z))

2πi+

√log( f (z))

2πi−1

)2

+

(√log( f (z))

2πi−√

log( f (z))2πi

−1

)2

= exp(2H (z))+ exp(−2H (z))

and (log( f (z))

πi−1)=

12(exp(2H (z))+ exp(−2H (z))) .

Thuslog( f (z)) = πi+

πi2(exp(2H (z))+ exp(−2H (z)))

which shows

| f (z)| =

∣∣∣∣exp[

πi2(exp(2H (z))+ exp(−2H (z)))

]∣∣∣∣≤ exp

∣∣∣∣πi2(exp(2H (z))+ exp(−2H (z)))

∣∣∣∣≤ exp

∣∣∣π2(|exp(2H (z))|+ |exp(−2H (z))|)

∣∣∣≤ exp

∣∣∣π2(exp(2 |H (z)|)+ exp(|−2H (z)|))

∣∣∣= exp(π exp2 |H (z)|) .

55.5. THE PICARD THEOREMS 1757Therefore, for z € 0B(0,0R),142) < (H(0)|+24In (55 ). (55.5.26By the maximum modulus theorem, the above inequality holds for all |z| < OR also.Next I will use 55.5.23 to get an inequality for | f (z)| in terms of |H (z)|. From 55.5.23,H (z) = log (eee — jee) — )and so2ay = ney RE REL~2ane = me( E/E)2log (f (z)) log (f (z))= los (V 201 + 201 1)Therefore,( ex, (eo)20i 20i2log(f(z)) _, /log (f(z)(V 2ni -\/ 2ni -)= exp(2H(z))+exp(—2H (z))and(Sees) - 1) = 5 (exp (2H (z)) +exp(—2H (z))).Thuslog (f (z)) = mi-+ > (exp (2H (2)) + exp (—2H (2)))which showsIf (2)|exp E (exp (2H (z)) exp (—2H =) |Ti(exp 2H (2) bexp(—24 (2)IAexpIAexp|* ({exp (2H (z))] + lexp(~2H (2))))IAexp| 7 (exp (2|H (2)|) +exp(|-2H (2)]))|exp (2exp2|H (z)|).