55.5. THE PICARD THEOREMS 1757
Therefore, for z ∈ ∂B(0,θR) ,
|H (z)| ≤ |H (0)|+24C ln(
11−θ
). (55.5.26)
By the maximum modulus theorem, the above inequality holds for all |z|< θR also.Next I will use 55.5.23 to get an inequality for | f (z)| in terms of |H (z)|. From 55.5.23,
H (z) = log
(√log( f (z))
2πi−√
log( f (z))2πi
−1
)and so
2H (z) = log
(√log( f (z))
2πi−√
log( f (z))2πi
−1
)2
−2H (z) = log
(√log( f (z))
2πi−√
log( f (z))2πi
−1
)−2
= log
(√log( f (z))
2πi+
√log( f (z))
2πi−1
)2
Therefore, (√log( f (z))
2πi+
√log( f (z))
2πi−1
)2
+
(√log( f (z))
2πi−√
log( f (z))2πi
−1
)2
= exp(2H (z))+ exp(−2H (z))
and (log( f (z))
πi−1)=
12(exp(2H (z))+ exp(−2H (z))) .
Thuslog( f (z)) = πi+
πi2(exp(2H (z))+ exp(−2H (z)))
which shows
| f (z)| =
∣∣∣∣exp[
πi2(exp(2H (z))+ exp(−2H (z)))
]∣∣∣∣≤ exp
∣∣∣∣πi2(exp(2H (z))+ exp(−2H (z)))
∣∣∣∣≤ exp
∣∣∣π2(|exp(2H (z))|+ |exp(−2H (z))|)
∣∣∣≤ exp
∣∣∣π2(exp(2 |H (z)|)+ exp(|−2H (z)|))
∣∣∣= exp(π exp2 |H (z)|) .