1787
Then from 57.0.1 and 57.0.2,
∣∣∣∣∣P(z)−p(n)
∏k=1
(1+unk (z)
)∣∣∣∣∣≤
∣∣∣∣∣P(z)−n
∏k=1
(1+uk (z))
∣∣∣∣∣+∣∣∣∣∣ n
∏k=1
(1+uk (z))−p(n)
∏k=1
(1+unk (z)
)∣∣∣∣∣≤ ε +
∣∣∣∣∣ n
∏k=1
(1+uk (z))−p(n)
∏k=1
(1+unk (z)
)∣∣∣∣∣≤ ε +
∣∣∣∣∣ n
∏k=1
(1+ |uk (z)|)
∣∣∣∣∣∣∣∣∣∣1− ∏
nk>n
(1+unk (z)
)∣∣∣∣∣≤ ε +
∣∣∣∣∣ N0
∏k=1
(1+ |uk (z)|)
∣∣∣∣∣∣∣∣∣∣ n
∏k=N0+1
(1+ |uk (z)|)
∣∣∣∣∣∣∣∣∣∣1− ∏
nk>n
(1+unk (z)
)∣∣∣∣∣≤ ε +Ce
∣∣∣∣∣∏nk>n
(1+∣∣unk (z)
∣∣)−1
∣∣∣∣∣≤ ε +Ce
∣∣∣∣∣M(p(n))
∏k=n+1
(1+∣∣unk (z)
∣∣)−1
∣∣∣∣∣where M (p(n)) is the largest index in the permuted list,
{n1,n2, · · · ,np(n)
}. then from
57.0.1, this last term is dominated by
ε +Ce2
∣∣∣∣∣ln(
M(p(n))
∏k=n+1
(1+∣∣unk (z)
∣∣))− ln1
∣∣∣∣∣≤ ε +Ce2
∞
∑k=n+1
ln(1+∣∣unk
∣∣)≤ ε +Ce2∞
∑k=n+1
∣∣unk
∣∣< 2ε
for all n large enough uniformly in z ∈ H. Therefore,∣∣∣P(z)−∏
p(n)k=1
(1+unk (z)
)∣∣∣ < 2ε
whenever n is large enough. This proves the part about the permutation.
It remains to verify the assertion about the points, z0, where P(z0) = 0. Obviously, ifun (z0) =−1, then P(z0) = 0. Suppose then that P(z0) = 0 and M > N0. Then
∣∣∣∣∣ M
∏k=1
(1+uk (z0))
∣∣∣∣∣=