1787

Then from 57.0.1 and 57.0.2,

∣∣∣∣∣P(z)−p(n)

∏k=1

(1+unk (z)

)∣∣∣∣∣≤

∣∣∣∣∣P(z)−n

∏k=1

(1+uk (z))

∣∣∣∣∣+∣∣∣∣∣ n

∏k=1

(1+uk (z))−p(n)

∏k=1

(1+unk (z)

)∣∣∣∣∣≤ ε +

∣∣∣∣∣ n

∏k=1

(1+uk (z))−p(n)

∏k=1

(1+unk (z)

)∣∣∣∣∣≤ ε +

∣∣∣∣∣ n

∏k=1

(1+ |uk (z)|)

∣∣∣∣∣∣∣∣∣∣1− ∏

nk>n

(1+unk (z)

)∣∣∣∣∣≤ ε +

∣∣∣∣∣ N0

∏k=1

(1+ |uk (z)|)

∣∣∣∣∣∣∣∣∣∣ n

∏k=N0+1

(1+ |uk (z)|)

∣∣∣∣∣∣∣∣∣∣1− ∏

nk>n

(1+unk (z)

)∣∣∣∣∣≤ ε +Ce

∣∣∣∣∣∏nk>n

(1+∣∣unk (z)

∣∣)−1

∣∣∣∣∣≤ ε +Ce

∣∣∣∣∣M(p(n))

∏k=n+1

(1+∣∣unk (z)

∣∣)−1

∣∣∣∣∣where M (p(n)) is the largest index in the permuted list,

{n1,n2, · · · ,np(n)

}. then from

57.0.1, this last term is dominated by

ε +Ce2

∣∣∣∣∣ln(

M(p(n))

∏k=n+1

(1+∣∣unk (z)

∣∣))− ln1

∣∣∣∣∣≤ ε +Ce2

∑k=n+1

ln(1+∣∣unk

∣∣)≤ ε +Ce2∞

∑k=n+1

∣∣unk

∣∣< 2ε

for all n large enough uniformly in z ∈ H. Therefore,∣∣∣P(z)−∏

p(n)k=1

(1+unk (z)

)∣∣∣ < 2ε

whenever n is large enough. This proves the part about the permutation.

It remains to verify the assertion about the points, z0, where P(z0) = 0. Obviously, ifun (z0) =−1, then P(z0) = 0. Suppose then that P(z0) = 0 and M > N0. Then

∣∣∣∣∣ M

∏k=1

(1+uk (z0))

∣∣∣∣∣=

1787Then from 57.0.1 and 57.0.2,=~=7PpP(z)—T] +a :k=In n p(n)< )-[]C tue (2))| +E CG + me (2) — TT +n, (2)k=l k=l k=ln p(n)< e+ |[] (i +u(2))- J] (ita, (2)k=1 k=1n< e+ [TC +l) f1- [] +e, @)k=1 non1) n< et \fTU +l ()))| TL + tue) |1- TG +a, (2)k=l k=No+1 nonM(p(n))< €+Ce}T] (1+ |un, (2)|)- 1} <e+Ce] TT (14 |un, (2)]) -1np>n k=n+1where M (p(n)) is the largest index in the permuted list, {m,72,--+ ,p(n)}. then from57.0.1, this last term is dominated by€+Ce*|InM(p(n))("TT (+ bm a) —m=n+1< €+Ce’ y In (1+ |un,|) < €+Ce? y |u| < 2€for all n large enough uniformly in z € H. Therefore, | P(z) yy (l+un, (2))| < 2€whenever n is large enough. This proves the part about the permutation.It remains to verify the assertion about the points, zo, where P (zo) = 0. Obviously, ifUn (Zo) = —1, then P (zo) = 0. Suppose then that P (z)) = 0 and M > No. Thenms(nto =lle