1786 CHAPTER 57. INFINITE PRODUCTS
Now having picked N0, the assumption the un are bounded on H implies there exists aconstant, C, independent of z ∈ H such that for all z ∈ H,
N0
∏k=1
(1+ |uk (z)|)<C. (57.0.2)
Let N0 < M < N. Then∣∣∣∣∣ N
∏k=1
(1+uk (z))−M
∏k=1
(1+uk (z))
∣∣∣∣∣≤
N0
∏k=1
(1+ |uk (z)|)
∣∣∣∣∣ N
∏k=N0+1
(1+uk (z))−M
∏k=N0+1
(1+uk (z))
∣∣∣∣∣≤ C
∣∣∣∣∣ N
∏k=N0+1
(1+uk (z))−M
∏k=N0+1
(1+uk (z))
∣∣∣∣∣≤ C
(M
∏k=N0+1
(1+ |uk (z)|)
)∣∣∣∣∣ N
∏k=M+1
(1+uk (z))−1
∣∣∣∣∣≤ Ce
∣∣∣∣∣ N
∏k=M+1
(1+ |uk (z)|)−1
∣∣∣∣∣ .Since 1≤∏
Nk=M+1 (1+ |uk (z)|)≤ e, it follows the term on the far right is dominated by
Ce2
∣∣∣∣∣ln(
N
∏k=M+1
(1+ |uk (z)|)
)− ln1
∣∣∣∣∣≤ Ce2
N
∑k=M+1
ln(1+ |uk (z)|)
≤ Ce2N
∑k=M+1
|uk (z)|< ε
uniformly in z ∈ H provided M is large enough. This follows from the simple observationthat if 1< x< e, then x−1≤ e(lnx− ln1). Therefore, {∏m
k=1 (1+uk (z))}∞
m=1 is uniformlyCauchy on H and therefore, converges uniformly on H. Let P(z) denote the function itconverges to.
What about the permutations? Let {n1,n2, · · ·} be a permutation of the indices. Letε > 0 be given and let N0 be such that if n > N0,∣∣∣∣∣ n
∏k=1
(1+uk (z))−P(z)
∣∣∣∣∣< ε
for all z ∈ H. Let {1,2, · · · ,n} ⊆{
n1,n2, · · · ,np(n)}
where p(n) is an increasing sequence.