1786 CHAPTER 57. INFINITE PRODUCTS

Now having picked N0, the assumption the un are bounded on H implies there exists aconstant, C, independent of z ∈ H such that for all z ∈ H,

N0

∏k=1

(1+ |uk (z)|)<C. (57.0.2)

Let N0 < M < N. Then∣∣∣∣∣ N

∏k=1

(1+uk (z))−M

∏k=1

(1+uk (z))

∣∣∣∣∣≤

N0

∏k=1

(1+ |uk (z)|)

∣∣∣∣∣ N

∏k=N0+1

(1+uk (z))−M

∏k=N0+1

(1+uk (z))

∣∣∣∣∣≤ C

∣∣∣∣∣ N

∏k=N0+1

(1+uk (z))−M

∏k=N0+1

(1+uk (z))

∣∣∣∣∣≤ C

(M

∏k=N0+1

(1+ |uk (z)|)

)∣∣∣∣∣ N

∏k=M+1

(1+uk (z))−1

∣∣∣∣∣≤ Ce

∣∣∣∣∣ N

∏k=M+1

(1+ |uk (z)|)−1

∣∣∣∣∣ .Since 1≤∏

Nk=M+1 (1+ |uk (z)|)≤ e, it follows the term on the far right is dominated by

Ce2

∣∣∣∣∣ln(

N

∏k=M+1

(1+ |uk (z)|)

)− ln1

∣∣∣∣∣≤ Ce2

N

∑k=M+1

ln(1+ |uk (z)|)

≤ Ce2N

∑k=M+1

|uk (z)|< ε

uniformly in z ∈ H provided M is large enough. This follows from the simple observationthat if 1< x< e, then x−1≤ e(lnx− ln1). Therefore, {∏m

k=1 (1+uk (z))}∞

m=1 is uniformlyCauchy on H and therefore, converges uniformly on H. Let P(z) denote the function itconverges to.

What about the permutations? Let {n1,n2, · · ·} be a permutation of the indices. Letε > 0 be given and let N0 be such that if n > N0,∣∣∣∣∣ n

∏k=1

(1+uk (z))−P(z)

∣∣∣∣∣< ε

for all z ∈ H. Let {1,2, · · · ,n} ⊆{

n1,n2, · · · ,np(n)}

where p(n) is an increasing sequence.

1786 CHAPTER 57. INFINITE PRODUCTSNow having picked No, the assumption the u, are bounded on H implies there exists aconstant, C, independent of z € H such that for all z € H,No[] C4 luc (2))) <e. (57.0.2)k=1Let No <M <N. ThenN MTT +a) [TG +a)=1 =1No N M< [[C+lme(@)} T] G+u))- [] +(e)k=l k=No+l k=No+1N M< C| [J dt+u@)- [] d+)k=No+1 k=No+lM N< c( II (-+a(o) [J] G+u«(z))-1k=No+1 k=M+1N< Ce} [J (+lue(z)|)- 1).k=M+1Since 1 < TTL.) (1 +|mx (z)|) <e, it follows the term on the far right is dominated byCeNo( Il (-+u(o) ~ nlk=M+1cy inthe (2)<k=M+1N< Ce y luz (z)| <€k=M+1uniformly in z € 1 provided M is large enough. This follows from the simple observationthat if 1 <x <e, thenx—1<e(Inx—In1). Therefore, {[]j_, (1 + ux (z))}_, is uniformlyCauchy on H and therefore, converges uniformly on H. Let P(z) denote the function itconverges to.What about the permutations? Let {),72,---} be a permutation of the indices. Let€ > 0 be given and let No be such that if n > No,n[[G+«@))-P@k=1<e€Efor all z € H. Let {1,2,--- ,n} C {n1,Nn2, ooo :Ny(n) } where p (7) is an increasing sequence.