1810 CHAPTER 57. INFINITE PRODUCTS

and therefore,∞

∑n=1

∣∣∣(1+zn

)e−zn −1

∣∣∣< ∞

with the convergence uniform on compact sets.

9. ↑ Show ∏∞n=1(1+ z

n

)e−zn converges to an analytic function on C which has zeros

only at the negative integers and that therefore,

∏n=1

(1+

zn

)−1e

zn

is a meromorphic function (Analytic except for poles) having simple poles at thenegative integers.

10. ↑Show there exists γ such that if

Γ(z)≡ e−γz

z

∏n=1

(1+

zn

)−1e

zn ,

then Γ(1) = 1. Thus Γ is a meromorphic function having simple poles at the negativeintegers. Hint: ∏

∞n=1 (1+n)e−1/n = c = eγ .

11. ↑ Now show that

γ = limn→∞

[n

∑k=1

1k− lnn

]

12. ↑Justify the following argument leading to Gauss’s formula

Γ(z) = limn→∞

(n

∏k=1

(k

k+ z

)e

zk

)e−γz

z

= limn→∞

(n!

(1+ z)(2+ z) · · ·(n+ z)ez(∑

nk=1

1k ))

e−γz

z

= limn→∞

n!(1+ z)(2+ z) · · ·(n+ z)

ez(∑nk=1

1k )e−z[∑n

k=11k−lnn]

= limn→∞

n!nz

(1+ z)(2+ z) · · ·(n+ z).

13. ↑ Verify from the Gauss formula above that Γ(z+1) = Γ(z)z and that for n a non-negative integer, Γ(n+1) = n!.

14. ↑ The usual definition of the gamma function for positive x is

Γ1 (x)≡∫

0e−ttx−1dt.

1810 CHAPTER 57. INFINITE PRODUCTSand therefore,- v4 4& |(1+2)e# =i] <on=] nwith the convergence uniform on compact sets.9. t Show JT, (1 + a) en converges to an analytic function on C which has zerosonly at the negative integers and that therefore,oo 1.I] (1 + <) enn=1 nis a meromorphic function (Analytic except for poles) having simple poles at thenegative integers.10. +Show there exists y such that ifek =144 ~" ofn 9n=1T(z)=then (1) = 1. Thus Tis a meromorphic function having simple poles at the negativeintegers. Hint: []?_, (1 +n)e"'/" =c=e!.11. t Now show that; “1y= lim % {nek=112. tJustify the following argument leading to Gauss’s formula. n k Zz eri) = tim (TT (A)e :! , —%= lim ( ne e(Li1 ) éneo \ (1 +z) (2+2z)-+:(n+z) zn! n | no= tlm e(Lk-1 bE) 7 LLea1 E-Innneo (1 +z)(2+2Z)-+-(n+2z)nink~ ms (aa Q42) (ne)13. t Verify from the Gauss formula above that (z+ 1) =I (z)z and that for n a non-negative integer, "(n+ 1) =n!.14. + The usual definition of the gamma function for positive x isT; (x) =| et ldt.