196 CHAPTER 9. WEIERSTRASS APPROXIMATION THEOREM

Evaluating this at t = 0,

m

∑k=0

(mk

)k2 (x)k (1− x)m−k = m(m−1)x2 +mx.

Therefore,

m

∑k=0

(mk

)(k−mx)2 xk (1− x)m−k = m(m−1)x2 +mx−2m2x2 +m2x2

= m(x− x2)≤ 1

4m.

This proves the lemma.Now for x =(x1, · · · ,xn) ∈ [0,1]n consider the polynomial,

pm (x)≡m

∑k1=0· · ·

m

∑kn=0

(mk1

)(mk2

)· · ·(

mkn

)xk1

1 (1− x1)m−k1 xk2

2 (1− x2)m−k2

· · ·xknn (1− xn)

m−kn f(

k1

m, · · · , kn

m

). (9.1.2)

where f is a continuous function which takes [0,1]n to a normed linear space. Also defineif I is a compact set in Rn

||h||I ≡ sup{∥h(x)∥ : x ∈ I} .

Thus pm converges uniformly to f on a set I if

limm→∞||pm− f||I = 0.

Also to simplify the notation, let k = (k1, · · · ,kn) where each ki ∈ [0,m], km ≡

(k1m , · · · , kn

m

),

and let (mk

)≡(

mk1

)(mk2

)· · ·(

mkn

).

Also define||k||

∞≡max{ki, i = 1,2, · · · ,n}

xk (1−x)m−k ≡ xk11 (1− x1)

m−k1 xk22 (1− x2)

m−k2 · · ·xknn (1− xn)

m−kn .

Thus in terms of this notation,

pm (x) = ∑||k||∞≤m

(mk

)xk (1−x)m−k f

(km

)

Lemma 9.1.3 For x ∈ [0,1]n , f a continuous function defined on [0,1]n , and pm given in9.1.2, pm converges uniformly to f on [0,1]n as m→ ∞.

196 CHAPTER 9. WEIERSTRASS APPROXIMATION THEOREMEvaluating this at t = 0,k=0Therefore,— (m 2 m—k 2 2,2 2,2y i (k — mx)’ x* (1 —x) = m(m—1)x° +mx—2m*x" +m~°xk=0= m(x—x") < 7.This proves the lemma.Now for x = (x1,+++ ,Xn) € [0, 1]” consider the polynomial,7 — (m\(m mY ky m—k k ~kx)=) --- vee x! (1-x xy? (1 x2)" 7pm = YE (2) (2) (Ct dayk k,voxel can) tee (Toe), (9.1.2)m mwhere f is a continuous function which takes {0,1]” to a normed linear space. Also defineif J is a compact set in R”|||], = sup {|| (x)|:x € 7}.Thus p,, converges uniformly to f on a set J iflim ||Pm—f\||, = 0.m—yooAlso to simplify the notation, let k = (k1,--- ,k,) where each k; € [0,m], x = (4, wee ,) ;and letm\ (/(m\/{m mk}) \ki/ \ko ky)Also define\|k||,, = max {kj,i = 1,2,--- ,n}xk (1 —x)m-k =x) (1 —x,)"™ xe (1 — x7)" © . - xkn (1 —x,)™ .Thus in terms of this notation,pas en (n) eax ()Lemma 9.1.3 For x € [0,1]", f a continuous function defined on (0,1]" , and py given in9.1.2, Pm converges uniformly to f on [0,1]" as m > .