9.1. THE BERNSTEIN POLYNOMIALS 197

Proof: The function, f is uniformly continuous because it is continuous on a compactset. Therefore, there exists δ > 0 such that if ∥x−y∥< δ , then

∥f(x)− f(y)∥< ε.

Denote by G the set of k such that (ki−mxi)2 < η2m2 for each i where η = δ/

√n. Note

this condition is equivalent to saying that for each i,∣∣∣ ki

m − xi

∣∣∣< η . By the binomial theorem,

∑||k||∞≤m

(mk

)xk (1−x)m−k = 1

and so for x ∈ [0,1]n ,

∥pm (x)− f(x)∥ ≤ ∑||k||∞≤m

(mk

)xk (1−x)m−k

∥∥∥∥f(

km

)− f(x)

∥∥∥∥≤ ∑

k∈G

(mk

)xk (1−x)m−k

∥∥∥∥f(

km

)− f(x)

∥∥∥∥+ ∑

k∈GC

(mk

)xk (1−x)m−k

∥∥∥∥f(

km

)− f(x)

∥∥∥∥ (9.1.3)

Now for k ∈ G it follows that for each i∣∣∣∣ki

m− xi

∣∣∣∣< δ√n

(9.1.4)

and so∥∥f( k

m)− f(x)

∥∥< ε because the above implies∣∣ k

m −x∣∣< δ . Therefore, the first sum

on the right in 9.1.3 is no larger than

∑k∈G

(mk

)xk (1−x)m−k

ε ≤ ∑||k||∞≤m

(mk

)xk (1−x)m−k

ε = ε.

Letting M ≥max{∥f(x)∥ : x ∈ [0,1]n} it follows

∥pm (x)− f(x)∥

≤ ε +2M ∑k∈GC

(mk

)xk (1−x)m−k

≤ ε +2M(

1η2m2

)n

∑k∈GC

(mk

) n

∏j=1

(k j−mx j)2 xk (1−x)m−k

≤ ε +2M(

1η2m2

)n

∑||k||∞≤m

(mk

) n

∏j=1

(k j−mx j)2 xk (1−x)m−k

because on GC,

(k j−mx j)2

η2m2 < 1, j = 1, · · · ,n.

9.1. THE BERNSTEIN POLYNOMIALS197Proof: The function, f is uniformly continuous because it is continuous on a compactset. Therefore, there exists 6 > 0 such that if ||x —y|| < 6, thenIf (x)-f(y)|| <e.Denote by G the set of k such that (k; — mx;)” < n?m? for each i where n = 5/,/n. Notethis condition is equivalent to saying that for each i,k;men () x (1—x)™ B=and so for x € [0,1]”,Pm Cs) —£08)<F (R)sta _xym-k< (*) xK(1—x)™*+)(x) xk (y—x)m*keGCNow for k € G it follows that for each iand so ||f (*)Ki _JnXi) <r() tor() ne<1. By the binomial theorem,1r() na(9.1.3)(9.1.4)— f(x)|| < € because the above implies | * —x| < 5. Therefore, the first sumon the right in 9.1.3 is no larger than» (7) xK(1—x)™ Ke < grey (”) xk(1—x)™Ke=e.Letting M > max {||f(x)|| : x € [0, 1]"} it followsbecause on G°,[Pm (x) — f(x)||< e+2My ()ssa—xntkeGC1 \" m)\ 7 2 -k< e42M (3 ) Cape (kj; —mx;)” x* (1 —x)nem? k j=l ’ ’< e+2M (a5 ' > (t T (kj —mx;)2x* (1—x)™*=> _ ;) _n?m? aX <m k j=lki 2“ee <1,j=1,-:-,n.