2188 CHAPTER 64. WIENER PROCESSES
= limn→∞
E
(m
∏j=1
exp
(i
n
∑k=1
(ψk (t j)−ψk
(t j−1
))φ j (ek)
))
= limn→∞
m
∏j=1
n
∏k=1
E(
exp(
i(ψk (t j)−ψk
(t j−1
))φ j (ek)
))= lim
n→∞
m
∏j=1
E
(exp
(i
n
∑k=1
(ψk (t j)−ψk
(t j−1
))φ j (ek)
))
= limn→∞
E
(m
∏j=1
exp
(i
n
∑k=1
(ψk (t j)−ψk
(t j−1
))φ j (ek)
))
= limn→∞
m
∏j=1
n
∏k=1
E(
exp(
i(ψk (t j)−ψk
(t j−1
))φ j (ek)
))= lim
n→∞
m
∏j=1
E
(exp
(i
n
∑k=1
(ψk (t j)−ψk
(t j−1
))φ j (ek)
))
=m
∏j=1
E
(exp
(i
∞
∑k=1
(ψk (t j)−ψk
(t j−1
))φ j (ek)
))
=m
∏j=1
E
(exp
(iφ j
(∞
∑k=1
(ψk (t j)−ψk
(t j−1
))ek
)))
=m
∏j=1
E(
exp(
iφ j(W (t j)−W
(t j−1
))))which shows by Theorem 59.13.3 on Page 1898 that the random vectors,{
W (t j)−W(t j−1
)}mj=1
are independent.It is also routine to verify using properties of the ψk and characteristic functions that
L (W (t)−W (s)) = L (W (t− s)). To see this, let φ ∈ E ′
E (exp(iφ (W (t)−W (s))))
= E
((exp
(iφ
∞
∑k=1
(ψk (t)−ψk (s))ek
)))
= limn→∞
E
((exp
(iφ
n
∑k=1
(ψk (t)−ψk (s))ek
)))