64.6. WIENER PROCESSES, ANOTHER APPROACH 2211

=1√

2π |h|

∫∞

−∞

eu∫

ue− 1

2y2

|h|2 dydu =1√2π

∫∞

−∞

∫∞

u/|h|eue−

12 v2

dvdu

=1√2π

∫∞

−∞

∫ |h|v−∞

eue−12 v2

dudv =1√2π

∫∞

−∞

e−12 v2

e|h|vdv

=1√2π

√2√

πe|h|2/2 = e

12 |h|

2< ∞

If h = 0,W (h) would be 0 because by the construction, E(

W (0)2)= (0,0)H = 0. Then

∫Ω

eW (h)dP =∫

e0dP = 1

Consider the last claim. It is enough to assume p is an integer.∣∣∣∣∣ n

∑k=0

W (h)k

k!− eW (h)

∣∣∣∣∣ =

∣∣∣∣∣ ∞

∑k=n+1

W (h)k

k!

∣∣∣∣∣= ∣∣∣W (h)n+1∣∣∣ ∣∣∣∣∣ ∞

∑k=0

W (h)k

(n+1+ k)!

∣∣∣∣∣=

∣∣∣W (h)n+1∣∣∣ ∣∣∣∣∣ ∞

∑k=0

W (h)k

k!k!

(n+1+ k)!

∣∣∣∣∣≤

∣∣∣W (h)n+1∣∣∣ 1(n+1)!

∣∣∣∣∣ ∞

∑k=0

W (h)k

k!

∣∣∣∣∣=∣∣∣∣∣W (h)n+1

(n+1)!

∣∣∣∣∣eW (h)

This converges to 0 for each ω because it says nothing more than that the nth term of aconvergent sequence converges to 0.

∫Ω

(∣∣∣∣∣W (h)n+1

(n+1)!

∣∣∣∣∣eW (h)

)2p

dP =∫

(W (h)n+1

(n+1)!

)2p(eW (h)

)2pdP

=

(1

(n+1)!

)2p 1√2π |h|

∫R

e− 1

2x2

|h|2 e2pxx2p(n+1)dx

=

(1

(n+1)!

)2p 1√2π |h|

e2p|h|2∫R

e− 1

2|h|2(x−2p|h|2)

2

x2p(n+1)dx

≤(

1(n+1)!

)2p 22p(n+1)√

2π |h|e2p|h|2

∫R

e− 1

2|h|2(x−2p|h|2)

2 (x−2p |h|2

)2p(n+1)dx

+

(1

(n+1)!

)2p 22p(n+1)√

2π |h|e2p|h|2

∫R

e− 1

2|h|2(x−2p|h|2)

2 (2p |h|2

)2p(n+1)dx

64.6. WIENER PROCESSES, ANOTHER APPROACH 2211ly 1 co ree 1,22 \nl? ue—5Vu= —— e“e 2” dvdusaa | a fre dyd V2n ian“Lf fee atv a fe Pea= e udv = e e vJ2n —oo J —oo V2n —oo] 2 1), /2= —V2Vrelll? = 62!" < 00V20If h = 0,W (h) would be 0 because by the construction, E (w (0)’) = (0,0), =0. Then[evMar= | ear =tJQ JQConsider the last claim. It is enough to assume p is an integer.y W (h)* — eW(h) _ y W (h)* = |W ny" Lari h)*ixo &! kon! er= whe — k!_ W h n+l(n) | py kt! (n+1+k)!1 [awk jw!< n+l _ W (h)S/W h) | aay py k! (n+1)!This converges to 0 for each @ because it says nothing more than that the n’” term of aconvergent sequence converges to 0.ny! 2p 2W(h) win)?L( e » dP= ACen n+l)! ") (c ) dP_ ( 1 )" [e —4 ize 2px 2P+)) dy(n+1)! a2 2_ 1 Poy vine [ ong 20?) P+) gy(n+1)!) 2m |h| JR2P 42p(n+1)c ( 1 ) 22p(n pol? [« ~ ye (e- 2pln\)~ (« ~ ap lal 2)~ \(n+i)! Von |h|2 n+ 1 P 92p(n+1) ovine [e ~ yz (* x—2plhl2)” (2p Ih np) )(n+1)! V2n|hlW (h)"*!(n+1)!