65.4. SOME HILBERT SPACE THEORY 2241
H because ∥∥∥∥∥∥ fi
(e j√λ j
,x
)U1
∥∥∥∥∥∥H
≤ ∥ fi∥H1√λ j∥x∥U1
Thus each term in the finite sum of 65.4.6 is in L (U1,H)0 and this proves the lemma.It is interesting to note that Q1/2
1 U1 = J(Q1/2 (U)
).
L
∑j=1
√λ je j
(J∗e j√
λ j,x
)Q1/2(U)
= Jx
and{
J∗e j√λ j
}are an orthonormal set in Q1/2 (U). Therefore, the sum of the squares of(
J∗e j√λ j,x)
Q1/2(U)
is finite. Hence you can define y ∈U1 by
y≡L
∑j=1
(J∗e j√
λ j,x
)Q1/2(U)
e j
AlsoL
∑i=1
√λ iei⊗ ei (y) =
L
∑i=1
√λ iei
(J∗ei√
λ i,x)
Q1/2(U)
=L
∑i=1
ei (ei,Jx)U1= Jx
Now you can show that Q1/21 = ∑
Li=1√
λ iei⊗ ei. You do this by showing that it works andcommutes with every operator which commutes with Q1. Thus Jx = Q1/2
1 y. This showsthat J
(Q1/2 (U)
)⊆ Q1/2
1 (U1). However, you can also turn the inclusion around. Thus ifyou start with y ∈U1 and form
Q1/21 y =
L
∑i=1
√λ iei⊗ ei (y) =
L
∑i=1
√λ iei (y,ei) ,
then the (y,ei)2U1
has a finite sum because the {ei} are orthonormal. Thus you can form
x≡L
∑i=1
(y,ei)U1
J∗ei√λ i∈ Q1/2 (U)
Then since the{
J∗e j√λ j
}are orthonormal,
J (x) =L
∑j=1
√λ je j
(J∗e j√
λ j,x
)Q1/2(U)
=L
∑j=1
√λ je j (y,e j)U1
=L
∑j=1
√λ je j⊗ e j (y) = Q1/2
1 (y)