2246 CHAPTER 65. STOCHASTIC INTEGRATION
Diversion The reason the series converges goes as follows. Estimate
E
∣∣∣∣∣ q
∑k=p
(ψk(t ∧ tn
j+1)−ψk
(t ∧ tn
j))
Φ(tn
j)
gk
∣∣∣∣∣2
H
First consider the mixed terms. Let ∆ψk = ψk
(t ∧ tn
j+1
)−ψk
(t ∧ tn
j
). For l < k,
E((
∆ψkΦ(tn
j)
gk,∆ψ lΦ(tn
j)
gl))
= E(∆ψk∆ψ l
(Φ(tn
j)
gk,Φ(tn
j)
gl))
Now by independence, this equals
E (∆ψk∆ψ l)E((
Φ(tn
j)
gk,Φ(tn
j)
gl))
= E (∆ψk)E (∆ψ l)E((
Φ(tn
j)
gk,Φ(tn
j)
gl))
= 0
Thus you only need to consider the non mixed terms, and the thing you want to estimate isof the form
q
∑k=p
E(∣∣(ψk
(t ∧ tn
j+1)−ψk
(t ∧ tn
j))
Φ(tn
j)
gk∣∣2)
Now by independence again, this equals
q
∑k=p
E((
∆ψkΦ(tn
j)
gk,∆ψkΦ(tn
j)
gk))
=q
∑k=p
E(∆ψ
2k(Φ(tn
j)
gk,Φ(tn
j)
gk))
=q
∑k=p
E(∆ψ
2k)
E(Φ(tn
j)
gk,Φ(tn
j)
gk)
=((
t ∧ tnj+1)−(t ∧ tn
j)) q
∑k=p
E(∣∣Φ(tn
j)
gk∣∣2H
)and this sum is just a part of the convergent infinite sum for∫
Ω
∥∥Φ(tn
j)∥∥2
L2(Q1/2U,H)dP < ∞
Therefore, this converges to 0 as p,q → ∞ and so the sum converges in L2 (Ω,H) asclaimed.
End of diversionThe J and the J−1 cancel in 65.5.12 because J is one to one. It follows that 65.5.11
equalsmn
∑j=0
∞
∑k=1
(ψk(t ∧ tn
j+1)−ψk
(t ∧ tn
j))
Φ(tn
j)
gk+