67.9. SOME REPRESENTATION THEOREMS 2303

Proof: I will show in the process of the proof that functions of the form 67.9.14 are inL2 (Ω,P). Let g ∈ L2 (Ω,Gt ,P) be such that∫

g(ω)exp(∫ t

0hT dW− 1

2

∫ t

0h ·hdτ

)dP

= exp(−1

2

∫ t

0h ·hdτ

)∫Ω

g(ω)exp(∫ t

0hT dW

)dP = 0

for all such h. It is required to show that whenever this happens for all such functionsexp(∫ t

0 hT dW− 12∫ t

0 h ·hdt)

then g = 0.Letting h be given as above,

∫ t0 hT dW

=m−1

∑i=0

aTi (W(ti+1)−W(ti)) (67.9.15)

=m

∑i=1

aTi−1W(ti)−

m−1

∑i=0

aTi W(ti)

=m−1

∑i=1

(aT

i−1−aTi)

W(ti)+aT0 W(t0)+aT

n−1W(tn) . (67.9.16)

Also 67.9.15 shows exp(∫ t

0 hT dW)

is in L2 (Ω,P) . To see this recall the W(ti+1)−W(ti)are independent and the density of W(ti+1)−W(ti) is

C (n,∆ti)exp

(−1

2|x|2

(ti+1− ti)

), ∆ti ≡ ti+1− ti,

so ∫Ω

(exp(∫ t

0hT dW

))2

dP =∫

exp(

2∫ t

0hT dW

)dP

=∫

exp

(m−1

∑i=0

2aTi (W(ti+1)−W(ti))

)dP

=∫

m−1

∏i=0

exp(2aT

i (W(ti+1)−W(ti)))

dP

=m−1

∏i=0

∫Ω

exp(2aT

i (W(ti+1)−W(ti)))

dP

=m−1

∏i=0

∫Rn

C (n,∆ti)exp(2aT

i x)

exp

(−1

2|x|2

∆ti

)dx < ∞

Choosing the ai appropriately in 67.9.16, the formula in 67.9.16 is of the form

m

∑i=0

yTi Wti

67.9. SOME REPRESENTATION THEOREMS 2303Proof: I will show in the process of the proof that functions of the form 67.9.14 are inL? (Q,P). Let g € L? (Q,G, P) be such thatt ] t[sore naw 5 [hohde) apQ 0 2 Jo1 ot t= ep(—5 | h-hdz) [, e(o)exr( | hTaw)) aP=02 Jo JQ JOfor all such h. It is required to show that whenever this happens for all such functionsexp ({jh’dW — 4 {}h- hdr) then g = 0.Letting h be given as above, {jh’dWm—1= Val (W(ti1)-W(4)) (67.9.15)i=0m m—1= aj W(t) — ) a7 W(t)i=1 i=0m—1= (a/_, —a?) W(i;) +45 W(t) +a, W(th). (67.9.16)i=lAlso 67.9.15 shows exp (Jj h’ dW) is in L? (Q, P). To see this recall the W (t;.1) — W (ti)are independent and the density of W (t;.1) — W (t;) is1 x|7C (n, At;) exp (hat) , Ati = tin. —hi,l l[ (ov ([wraw)) ara [exp (2 ['ntaw) ap_ [ exp (5 2al OW a) We) dPQ i=0[ TI exp (2a? (W (t::1) — W(t))) dPi=0sOm—1~ I] [ex (2a7 (W (tis1) —W(%))) dPpa r 1 |x?= C (n, At; 2a; -= dx < 00I] I C(n i) exp (2a; x) exp 7a, |Choosing the a; appropriately in 67.9.16, the formula in 67.9.16 is of the formmTYi Wi,—L