2334 CHAPTER 68. A DIFFERENT KIND OF STOCHASTIC INTEGRATION

Next consider for i = (i1 · · · in) ,

fσ (t1, · · · , tn) = ∑i

ciXAi1×···×Ain

(tσ(1), · · · , tσ(n)

)= ∑

ici

n

∏j=1

XAi j

(tσ( j)

)= ∑

ici

n

∏j=1

XAiσ−1( j)

(t j)

= ∑i

ciXAiσ−1(1)

×···×Aiσ−1(n)

(t1, · · · , tn)

Thus, it appears that fσ ̸= f . However,

In ( fσ )≡∑i

ci

n

∏k=1

W(

Aiσ−1(k)

)= In ( f ) (68.3.16)

because one just considers the factors in a different order than the other. The permutationacts on (i1 · · · in). Define the symetrization of f by f̃ given by

f̃ (t1, · · · , tn)≡1n! ∑

σ

fσ (t1, · · · , tn)

Then In(

f̃)= In ( f ) and

f̃(tσ(1), · · · , tσ(n)

)= f̃ (t1, · · · , tn) .

If f(tσ(1), · · · , tσ(n)

)= f (t1, · · · , tn) for all σ then f̃ = f . From the above, f̃ equals

1n! ∑

σ

∑i

ciXAiσ−1(1)

×···×Aiσ−1(n)

(t1, · · · , tn)

Note that 68.3.16 implies that

In ( f ) = In(

f̃)= n! ∑

i1<i2<···<in

ci1,··· ,in ∏k

W(Aik

)(68.3.17)

Now consider

f̃ = ∑i

ciXAi1×···×Ainand g̃ = ∑

idiXAi1×···×Ain

where without loss of generality, these sets Ak come from a single list of disjoint sets. Asabove, In ( f ) = In

(f̃)

and so it follows that

E (In ( f ) In (g)) = E(In(

f̃)

In (g̃)).

From the above, E(In(

f̃)

In (g̃))=

E

((n!)2

∑i1<···<in

∑j1<···< jn

ci1,··· ,ind j1,··· , jn ∏k

W(Aik

)∏

lW(A jl

))

= (n!)2∑

i1<···<in∑

j1<···< jn

ci1,··· ,ind j1,··· , jnE

(∏

kW(Aik

)∏

lW(A jl

))

= (n!)2∑

i1<···<in∑

j1<···< jn

ci1,··· ,ind j1,··· , jnE

(∏

kW(Aik

)W(A jk

))(68.3.18)

2334 CHAPTER 68. A DIFFERENT KIND OF STOCHASTIC INTEGRATIONNext consider for i = (i) ---in),fo (ths +** tn) = Lait XX Ain (te(1);° + ,tg(n))= Lal] %, ( to(j) -Lal]%,, -14) (t;)= an lao stn)Thus, it appears that fg # f. However,s)= Lal] (4;, 14) =I (f) (68.3.16)because one just considers the factors in a different order than the other. The permutationacts on (i, ---i,). Define the symetrization of f by f given byF(t yf = Lila ty: i)Then [, (f) =I,(f) andF (tes sto(n)) =F (tis stn)-If f (toys to(n)) = f (t,,-+* ,tn) for all o then f = f. From the above, f equals1rl PAI, 1 Aig ty (t1,-*+ stn)Note that 68.3.16 implies thathf=h(f)=a! Yo cin in PTW (Ai) (68.3.17)i, <in<-+'<in kNow considernmf= ary, xX Ain and g= Va, xX Aji iwhere without loss of generality, these sets A; come from a single list of disjoint sets. Asabove, In (f) = In (f) and so it follows thatE(hFrom the above, E Cn (f PF) In ( a) =£ (i? DD Sie sindine.in PTW (Aig) TT ))Ip<o<in Ji<o<JnEY einai e TTY a)Ip<<in fi<o<Jny y? Ci yin jy in E (IW (Ai, ) W a) (68.3.18)Ip<e<in jp<--<jn kf)In(8)) = E Un (Ff) In (8)) -Q