69.4. THE IMPLICIT CASE 2377
which requires easily that
Bgp =k
∑i=1
〈Bgp,ei
〉Bei,
the above holding for all k large enough. It follows that for any x ∈ span({gk}∞
k=1) , (finitelinear combination of vectors in {gk}∞
k=1)
Bx =∞
∑i=1⟨Bx,ei⟩Bei (69.4.19)
because for all k large enough,
Bx =k
∑i=1⟨Bx,ei⟩Bei
Also note that for such x ∈ span({gk}∞
k=1) ,
⟨Bx,x⟩ =
〈k
∑i=1⟨Bx,ei⟩Bei,x
〉=
k
∑i=1⟨Bx,ei⟩⟨Bx,ei⟩
=k
∑i=1|⟨Bx,ei⟩|2 =
∞
∑i=1|⟨Bx,ei⟩|2
Now for x arbitrary, let xk→ x in W where xk ∈ span({gk}∞
k=1) . Then by Fatou’s lemma,
∞
∑i=1|⟨Bx,ei⟩|2 ≤ lim inf
k→∞
∞
∑i=1|⟨Bxk,ei⟩|2
= lim infk→∞
⟨Bxk,xk⟩= ⟨Bx,x⟩ (69.4.20)
≤ ∥Bx∥W ′ ∥x∥W ≤ ∥B∥∥x∥2W
Thus the series on the left converges. Then also, from the above inequality,∣∣∣∣∣〈
q
∑i=p⟨Bx,ei⟩Bei,y
〉∣∣∣∣∣≤ q
∑i=p|⟨Bx,ei⟩| |⟨Bei,y⟩|
≤
(q
∑i=p|⟨Bx,ei⟩|2
)1/2( q
∑i=p|⟨By,ei⟩|2
)1/2
≤
(q
∑i=p|⟨Bx,ei⟩|2
)1/2(∞
∑i=1|⟨By,ei⟩|2
)1/2
By 69.4.20,
≤
(q
∑i=p|⟨Bx,ei⟩|2
)1/2(∥B∥∥y∥2
W
)1/2≤
(q
∑i=p|⟨Bx,ei⟩|2
)1/2
∥B∥1/2 ∥y∥W