2378 CHAPTER 69. GELFAND TRIPLES

It follows that∞

∑i=1⟨Bx,ei⟩Bei (69.4.21)

converges in W ′ because it was just shown that∥∥∥∥∥ q

∑i=p⟨Bx,ei⟩Bei

∥∥∥∥∥W ′≤

(q

∑i=p|⟨Bx,ei⟩|2

)1/2

∥B∥1/2

and it was shown above that ∑∞i=1 |⟨Bx,ei⟩|2 < ∞, so the partial sums of the series 69.4.21

are a Cauchy sequence in W ′. Also, the above estimate shows that for ∥y∥= 1,∣∣∣∣∣⟨

∑i=1⟨Bx,ei⟩Bei,y

⟩∣∣∣∣∣ ≤(

∑i=1|⟨By,ei⟩|2

)1/2(∞

∑i=1|⟨Bx,ei⟩|2

)1/2

(∞

∑i=1|⟨Bx,ei⟩|2

)1/2

∥B∥1/2

and so ∥∥∥∥∥ ∞

∑i=1⟨Bx,ei⟩Bei

∥∥∥∥∥W ′≤

(∞

∑i=1|⟨Bx,ei⟩|2

)1/2

∥B∥1/2 (69.4.22)

Now for x arbitrary, let xk ∈ span({

g j}∞

j=1

)and xk→ x in W. Then for a fixed k large

enough, ∥∥∥∥∥Bx−∞

∑i=1⟨Bx,ei⟩Bei

∥∥∥∥∥≤ ∥Bx−Bxk∥

+

∥∥∥∥∥Bxk−∞

∑i=1⟨Bxk,ei⟩Bei

∥∥∥∥∥+∥∥∥∥∥ ∞

∑i=1⟨Bxk,ei⟩Bei−

∑i=1⟨Bx,ei⟩Bei

∥∥∥∥∥≤ ε +

∥∥∥∥∥ ∞

∑i=1⟨B(xk− x) ,ei⟩Bei

∥∥∥∥∥ ,the term ∥∥∥∥∥Bxk−

∑i=1⟨Bxk,ei⟩Bei

∥∥∥∥∥equaling 0 by 69.4.19. From 69.4.22 and 69.4.20,

≤ ε +∥B∥1/2

(∞

∑i=1|⟨B(xk− x) ,ei⟩|2

)1/2

≤ ε +∥B∥1/2 ⟨B(xk− x) ,xk− x⟩1/2 < 2ε

2378 CHAPTER 69. GELFAND TRIPLESIt follows thatMs(Bx, e;) Be; (69.4.21)1converges in W’ because it was just shown thatq 1/2< (Zeno?) 3"?i=pand it was shown above that Y°_, |(Bx,e;)|* < », so the partial sums of the series 69.4.21are a Cauchy sequence in W’. Also, the above estimate shows that for ||y|| = 1,qy? (Bx, e;) Be;i=pWw’co wo 1/27. 1/2| (x (Bx, “ery | < (z | (By, e;) *) (z (240)i=l i=l i=lwo 1/2< (Ele-a) BI)?i=land sooo oo 1/2Y. (Bx, ¢;) Be; «(Zi | (Bx, e;) ") \|BI)1/ (69.4.22)i=l w! =1Now for x arbitrary, let x; € span ({ g ike) and x, —> x in W. Then for a fixed k largeenough,«x — )* (Bx, e;) Bej|| < ||Bx — Bx«|i=l+ Bx — Y° (Bxx, €i ) Be;|| + y'( Bxx,e;) Be; — )) (Bx, e;) Beii=l i=l i=l<e+ Y? (B (xx — x) ,e1) Be; ;i=lthe termcoBx, _ y (Bxg, ei) Be;i=1equaling 0 by 69.4.19. From 69.4.22 and 69.4.20,~ 1/2< en? ($B)?i=l< e+||BI|!/? (B(x, —x) x, —x)!/? <2