2380 CHAPTER 69. GELFAND TRIPLES

= 2⟨BX (t) ,X (t)⟩−2⟨BX (s) ,X (t)⟩−⟨BX (t) ,X (t)⟩+2⟨BX (s) ,X (t)⟩−⟨BX (s) ,X (s)⟩

= ⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩

Thus⟨BX (t) ,X (t)⟩−⟨BX (s) ,X (s)⟩

= 2∫ t

s⟨Y (u) ,X (t)⟩du−⟨B(X (t)−X (s)) ,(X (t)−X (s))⟩

Lemma 69.4.4 In the above situation,

supt∈[0,T ]

⟨BX (t) ,X (t)⟩ ≤C (∥Y∥K′ ,∥X∥K)

Also, t→ BX (t) is weakly continuous with values in W ′.

Proof: From the above formula applied to the kth partition of [0,T ] described above,

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩=m−1

∑j=0

⟨BX(t j+1

),X(t j+1

)⟩−⟨BX (t j) ,X (t j)

=m−1

∑j=0

2∫ t j+1

t j

⟨Y (u) ,X

(t j+1

)⟩du−

⟨B(X(t j+1

)−X (t j)

),X(t j+1

)−X (t j)

⟩=

m−1

∑j=0

2∫ t j+1

t j

⟨Y (u) ,X rk (u)⟩du−

⟨B(X(t j+1

)−X (t j)

),X(t j+1

)−X (t j)

⟩Thus, discarding the negative terms and denoting by Pk the kth of these partitions,

supt j∈Pk

⟨BX (t j) ,X (t j)

⟩≤ ⟨BX0,X0⟩+2

∫ T

0|⟨Y (u) ,X r

k (u)⟩|du

≤ ⟨BX0,X0⟩+2∫ T

0∥Y (u)∥V ′ ∥X

rk (u)∥V du

≤ ⟨BX0,X0⟩+2(∫ T

0∥Y (u)∥p′

V ′ du)1/p′(∫ T

0∥X r

k (u)∥pV du

)1/p

≤C (∥Y∥K′ ,∥X∥K)

because these partitions are chosen such that

limk→∞

(∫ T

0∥X r

k (u)∥pV

)1/p

=

(∫ T

0∥X (u)∥p

V

)1/p

and so these are bounded. This has shown that for the dense subset of [0,T ] , D≡ ∪kPk,

supt∈D⟨BX (t) ,X (t)⟩<C (∥Y∥K′ ,∥X∥K)

2380 CHAPTER 69. GELFAND TRIPLES= 2(BX (1) ,X (t)) —2 (BX (s) ,X (t)) — (BX (1) ,X (1)+2 (BX (s) ,X (t)) — (BX (s) ,X (s))= (BX (t) ,X (t)) — (BX (s) ,X (s))Thus(BX (t) ,X (t)) — (BX (s) ,X (s))=2 [' YW) X(0)du-(B(X()-X(9)).&O]=X(9)Lemma 69.4.4 In the above situation,sup (BX (t),X (t)) <C(|I¥ lx IXlIx)t€(0,7]Also, t —> BX (t) is weakly continuous with values in W'.Proof: From the above formula applied to the k” partition of [0,7] described above,m—1(BX (tm) .X (tm)) — (BX0, Xo) = i (BX (tj41) ,X (tj41)) — (BX (tj) ,X (t;))=m1 tj+1= y?/ (¥ (u),.X (th41)) du — (B(X (th41) —X (03) .X (th+1) —X (4)J=m—1 tj-y 2 | (Y (u) .Xf (u)) du— (B(X (t141) —X (tj) .X (ty41) —X (t))j=0Thus, discarding the negative terms and denoting by Y the k’” of these partitions,sup (BX (t)).X ()) < (BXo.Xo) +2 [ [WY (W) Xf ())| dutjePy, 0T< (BXo.Xo) +2 [| Cu) lyr XE (lly duT ; \/p' 7 of 1/p< (BXo.%0) +2( [Iv nliaw) (fixe nlleaw) © <e(ly he lle)because these partitions are chosen such thatpn (fac ot - (" wxcoit) "and so these are bounded. This has shown that for the dense subset of [0,7], D = Ugg,sup (BX (t) ,X (t)) <C (|I¥ llr IX IIx)