240 CHAPTER 11. ABSTRACT MEASURE AND INTEGRATION

It follows that for all h this small,

0 <p

∑k=1

akµ (Ek)−∞

∑k=1

hµ ([s > kh])

=p

∑k=1

akµ (Ek)−p

∑k=1

ikhµ (Ek)≤ hp

∑k=1

µ (Ek)< ε.

Taking the inf for h this small and using Lemma 11.3.4,

0 ≤p

∑k=1

akµ (Ek)− supδ>h>0

∑k=1

hµ ([s > kh])

=p

∑k=1

akµ (Ek)−∫

sdµ ≤ ε.

Since ε > 0 is arbitrary, this proves the first part.To verify 11.3.12 Note the formula is obvious if λ = 0 because then [ih < λ f ] = /0 for

all i > 0. Assume λ > 0. Then∫λ f dµ ≡ sup

h>0

∑i=1

hµ ([ih < λ f ])

= suph>0

∑i=1

hµ ([ih/λ < f ])

= suph>0

λ

∑i=1

(h/λ )µ ([i(h/λ )< f ])

= λ

∫f dµ.

This proves the lemma.

Lemma 11.3.7 Let the nonnegative simple function, s be defined as

s(ω) =n

∑i=1

ciXEi (ω)

where the ci are not necessarily distinct but the Ei are disjoint. It follows that∫s =

n

∑i=1

ciµ (Ei) .

Proof: Let the values of s be {a1, · · · ,am}. Therefore, since the Ei are disjoint, each aiequal to one of the c j. Let Ai ≡ ∪

{E j : c j = ai

}. Then from Lemma 11.3.6 it follows that∫

s =m

∑i=1

aiµ (Ai) =m

∑i=1

ai ∑{ j:c j=ai}

µ (E j)

=m

∑i=1

∑{ j:c j=ai}

c jµ (E j) =n

∑i=1

ciµ (Ei) .