71.2. INCLUDING STOCHASTIC INTEGRALS 2429

where M (t) is a local martingale whose quadratic variation satisfies

[M] (t) =∫ t

0∥σ (s,z,ω)−σ (s, ẑ,ω)∥2

L2|u− û|2 ds

Thus, simplifying the constants,

sups∈[0,t]

|u(s)− û(s)|2 ≤C∫ t

0|u(s)− û(s)|2 ds+M∗ (t)

where M∗ (t) = sups∈[0,t] |M (s)|. Then by Gronwall’s inequality,

sups∈[0,t]

|u(s)− û(s)|2 ≤CM∗ (t)

Then take the expectation of both sides. Using the Burkholder Davis Gundy inequality,

E

(sup

s∈[0,t]|u(s)− û(s)|2

)≤CE

((∫ t

0K |z− ẑ|2 |u− û|2 ds

)1/2)

Then adjusting the constant again,

≤ 12

E

(sup

s∈[0,t]|u(s)− û(s)|2

)+CE

(∫ t

0K |z− ẑ|2 ds

)and so,

E

(sup

s∈[0,t]|u(s)− û(s)|2

)≤C

∫ t

0E

(sup

r∈[0,s]|z(s)−ẑ(s)|2

)ds

Letting T z = u where u is defined from z in the integral equation 71.2.7, the above in-equality implies that

E

(sup

s∈[0,t]|T nz1 (s)−T nz2 (s)|2H

)≤C

∫ t

0E

(sup

r∈[0,s]

∣∣T n−1z1 (r)−T n−1z2 (r)∣∣2)ds

≤C2∫ t

0

∫ s

0E

(sup

r1∈[0,r]

∣∣T n−2z1 (r1)−T n−2z2 (r1)∣∣2 )drds

One can iterate this, eventually finding that

E

(sup

s∈[0,t]|T nz1 (s)−T nz2 (s)|2H

)

≤ Cn∫ t

0

∫ t1

0· · ·∫ tn−1

0dtn−1 · · ·dtE

(sup

s∈[0,t]|z1 (s)− z2 (s)|2H

)

=CnT n

(n!)E

(sup

s∈[0,t]|z1 (s)− z2 (s)|2H

)

71.2. INCLUDING STOCHASTIC INTEGRALS 2429where M (ft) is a local martingale whose quadratic variation satisfiest2 2 = 12= [ 1o(s.2,0) ~6(s,2.0) [% ualsThus, simplifying the constants,sup |u(s) —&(s)|* <c | ju (s) —&(s)|?ds+M* (t)s€(0,t]where M* (t) = sup,io,) |M (s)|. Then by Gronwall’s inequality,sup |u(s) —&(s)|? <CM*(t)sE[0,t]Then take the expectation of both sides. Using the Burkholder Davis Gundy inequality,' 1/2£ (sp 16) 86) coe ( («ea 4-a2ar) )s¢(0,t] 0Then adjusting the constant again,t<le sup |u(s) —&(s)|? | +CE (/ K ln aha)2 se[0,] 0E( sup |u(s)— <C [ez sup |z(s) —2(s)[? ) dss€[0,1] re(0,s]Letting 7z =u where u is defined from z in the integral equation 71.2.7, the above in-equality implies thatand so,E ( sup | 7" 2 (s) — F"2 co) <c[r ( sup |" a (r) — 7" "2 oof) dss€(0,t] r€(0,s]<e['['r ( sup |.7" a (r y= 9 a(n) antsr,€(0,r]One can iterate this, eventually finding thatE ( sup |.7"Z) (s)— F"z2 co)s€(0,t]‘to pty ‘ty—1 2CP ee PO dtnis-ate (sup [21 (8) 20)0 Jo 0 s€(0,t]_ CT" Fg ( sup |Z (s) — 22 cl(n!) s€(0,t]