574 CHAPTER 19. HILBERT SPACES

=∫

0

((εI +A)e−(εI+A)t − (εI +A)e−(δ I+A)t

)tα−1dt

+∫

0

((εI +A)e−(δ I+A)t − (δ I +A)e−(δ I+A)t

)tα−1dt

= Pδ ,ε +Qδ ,ε .

Then Pδ ,ε = ∫∞

0(εI +A)

(e−(εI+A)t − e−(δ I+A)t

)tα−1dt

∥∥Pδ ,ε

∥∥≤ ∫ ∞

0∥(εI +A)∥

∥∥∥(e−(εI+A)t − e−(δ I+A)t)∥∥∥ tα−1dt

We need to estimate the difference of those semigroups. Call the first, e−(εI+A)t ≡ y andthe second x. Then by definition,

y′+(εI +A)y = 0,y(0) = x0

x′+(δ I +A)x = 0,x(0) = x0

Then ŷ(t)≡ eεty(t) , x̂(t)≡ eδ tx(t)

ŷ′− ε ŷ(t)+(εI +A) ŷ = 0, ŷ(0) = x0

x̂′−δ x̂(t)+(δ I +A) x̂ = 0, x̂(0) = x0

Thus

ŷ′+Aŷ = 0, ŷ(0) = x0

x̂′+Ax̂ = 0, x̂(0) = x0

By uniqueness, x̂ = ŷ. Thus ∣∣∣eεty(t)− eδ tx(t)∣∣∣= 0

Soeδ t∣∣∣e(ε−δ )ty(t)− x(t)

∣∣∣= 0

So, since x0 was arbitrary,

e(ε−δ )te−(εI+A)t − e−(δ I+A)t = 0

Then ∥∥Pδ ,ε

∥∥≤C (∥A∥)∫

0

∥∥∥(e−(εI+A)t − e(ε−δ )te−(εI+A)t)∥∥∥ tα−1dt

≤C (∥A∥)∫

0

∣∣∣1− e(ε−δ )t∣∣∣ tα−1dt =C (∥A∥)

∫∞

0

(1− e−(δ−ε)t

)tα−1dt

Now we need an estimate. Suppose 1 > λ > 0. For t ≥ 0, is

1− e−λ t ≤ λe−λ t?

574 CHAPTER 19. HILBERT SPACES_ | ((er +a) eer _ (er -a)e AN) p010+[( (el+A) eA _ (§14.A)e “Grea at= Ps¢ +Q5 ¢-Then P53. =[ (eI +A) (e-(eraw — (+A) (lap0[Pel] < f° Iker+a)|l|| (eer eran)We need to estimate the difference of those semigroups. Call the first, e~'the second x. Then by definition,1°! atel+A)t = y andy+(el+A)y = 0,y¥(0) = x0x +(61+A)x = 0,x(0) =x0Then $(t) = e® y(t) ,£(t) = e%x(t)F-ES(th+(E1+A)¥ = 0,9(0) =x0 — SK(t)+(6I+A)K = 0,£(0) =xThusH+AS = 0,9(0) =x0K+AK = 0,£(0) =x0By uniqueness, * = y. ThusSoSo, since xg was arbitrary,e(E—9)t p (El +A)t _ oe (Olt A)t =0ThenI|P5,e|| <C( |All) [ | (e —(eI+A)t _ o(€- Per (etvarr) layc(lal) [ 1-9) lat =C (All) [ (Le) tarNow we need an estimate. Suppose 1 > A > 0. For t > 0, isl—e #4 < det?