19.13. FRACTIONAL POWERS OF OPERATORS 575

Let f (t) = λe−λ t − e−λ t +1. Then

f ′ (t) =−λ2e−λ t +λe−λ t > 0, f (0) = λ −1+1 > 0

Thus ∥∥Pδ ,ε

∥∥≤C (∥A∥)∫

0(δ − ε)e−(δ−ε)ttα−1dt

Now change the variables letting u = (δ − ε) t. Then

∥∥Pδ ,ε

∥∥=C (∥A∥)∫

0e−u(

uδ − ε

)α−1

du =C (∥A∥)Γ(α) |δ − ε|1−α

Thus limε,δ→0 ∥Pδε∥= 0. Consider Qδ ,ε∥∥Qδ ,ε

∥∥ ≤∫

0

∥∥∥e−(δ I+A)t∥∥∥∥((εI +A)− (δ I +A))∥ tα−1dt

≤∫

0e−δ t |δ − ε| tα−1dt ≤

∫∞

0e−(δ−ε)t |ε−δ | tα−1dt

Now let u = (δ − ε) t,du = (δ − ε)dt. Then the last integral on the right equals

|ε−δ |∫

0e−uuα−1 du

|δ − ε|1

|δ − ε|α−1 = Γ(α) |δ − ε|1−α

so also limε,δ→0∥∥Qδ ,ε

∥∥= 0.

Definition 19.13.10 For α ∈ (0,1) , and (Ax,x)≥ 0 with A = A∗, we define

Aα ≡ limε→0

(εI +A)(εI +A)−(1−α)

Theorem 19.13.11 In the situation of the definition, if α +β ≤ 1, for α,β ∈ (0,1) ,

Aα Aβ = Aα+β

and in particular,Aα A1−α = A.

Also, Aα commutes with every operator which commutes with A. For A a Hermitian oper-ator as here, it follows that Aα is also Hermitian.

Proof: Aα+β ≡ limε→0 (εI +A)(εI +A)−(1−(α+β )) . Then since (εI +A) commuteswith e−(εI+A)t , it follows that this equals

limε→0

(εI +A)(εI +A)−(1−(α+β )) =

limε→0

(εI +A)2 (εI +A)−(1−α) (εI +A)−(1−β )

19.13. FRACTIONAL POWERS OF OPERATORSLet f(t) =Ae* —e*' +1. Thenf' (t)=—Ve™ +20 > 0, f(0) =A—-141>0Thus :\|Ps.el] < c(lall) [ (6—e)e Ol at0Now change the variables letting u = (6 — €)t. Thenco u a-lI?sel=ctlal) [ew(5% 2) du=c(lalpr(a)|o—el'*Thus lime 5_,0 ||P5¢|| = 0. Consider Q5 ¢r[oem e-eetars | eo (FE) le Slay0 0|| Qs || e (IAN (ef 4 A) — (SI +A)) || tltIAIANow let u = (6 — €)t,du = (6 — €) dt. Then the last integral on the right equals°° du 1e~3| | eye! =T(a)|5—e|!-%| | F Se] e™" (a) | |so also lime 559 ||Qs.e|| =0. IDefinition 19.13.10 For a € (0,1), and (Ax,x) > 0 with A = A*, we defineA“ = lim (el +A) (eI +A) ®€0Theorem 19.13.11 In the situation of the definition, if a+ B <1, for a,B € (0,1),A®AB = ArtBand in particular,ACA“ % = A,575Also, A* commutes with every operator which commutes with A. For A a Hermitian oper-ator as here, it follows that A® is also Hermitian.Proof: A%*? = lime_,o (ef +A) (ef +A) (8), Then since (e€J+A) commuteswith e~(¢/+4)"_ it follows that this equalslim (€7 +A) (€ + A)~U-(o+B)) _e>0lim (ef A)* (ef +A) “1~® (ef A) 1B)e>0