21.10. SOME EMBEDDING THEOREMS 703

The idea is to show that un approximates un well and then to argue that a subsequence ofthe {un} is a Cauchy sequence yielding a contradiction to 21.10.51.

Therefore,

un (t)−un (t) =k

∑i=1

un (t)X[ti−1,ti) (t)−k

∑i=1

uniX[ti−1,ti) (t)

=k

∑i=1

1ti− ti−1

∫ ti

ti−1

un (t)dsX[ti−1,ti) (t)−k

∑i=1

1ti− ti−1

∫ ti

ti−1

un (s)dsX[ti−1,ti) (t)

=k

∑i=1

1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality that

||un (t)−un (t)||pW

=k

∑i=1

∣∣∣∣∣∣∣∣ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∣∣∣∣∣∣∣∣p

WX[ti−1,ti) (t)

And so ∫ T

0||un (t)−un (t)||pW dt =

k

∑i=1

∫ ti

ti−1

∣∣∣∣∣∣∣∣ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∣∣∣∣∣∣∣∣p

Wdt

≤k

∑i=1

∫ ti

ti−1

ε

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∥∥∥∥p

Edt

+Cε

k

∑i=1

∫ ti

ti−1

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∥∥∥∥p

Xdt (21.10.52)

Consider the second of these. It equals

k

∑i=1

∫ ti

ti−1

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

∫ t

su′n (τ)dτds

∥∥∥∥p

Xdt

This is no larger than

≤Cε

k

∑i=1

∫ ti

ti−1

(1

ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτds)p

dt

=Cε

k

∑i=1

∫ ti

ti−1

(∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

dt

=Cε

k

∑i=1

((ti− ti−1)

1/p∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

21.10. SOME EMBEDDING THEOREMS 703The idea is to show that @, approximates u,, well and then to argue that a subsequence ofthe {7,,} is a Cauchy sequence yielding a contradiction to 21.10.51.Therefore,Un; Rit ti) (t)MekUn ~ hem Lit.) )(t)—i=1k 1 t; k 1 tjVe | teen OL mee [msds Fie say (0[ i-|i— tina Jr ay Fi Fi -1 Jt;~ d tj —G-1 wl! (ln (6) ~ Un (s))ds.2ir,_\.) (t) :i=l tj]It follows from Jensen’s inequality that[un (t) = tn (0) |vk 1 tj p= __. (Un (t) — Un (s)) ds Ziyi) (t)/ t; —tj-1i=1 11" u WAnd sotj tj P[mio — Tin (t)||2, dt = YI" | —— [ (un(t) —un()) ds ditj —ti-1 ti-1 WwWk tj 1 tj P< € | Un (t) —Un(s))ds|| dtLI pone [nels dskept 1 ti P+e) / / (un(t)—un(s))dsl) dt (21.10.52)j=] 74-1 ti —ti-1 ti-1 xXConsider the second of these. It equalsk tjomy vl — | AG t)dtdst—1 ||] 4-1 Jt)aThis is no larger than