704 CHAPTER 21. THE BOCHNER INTEGRAL

Since b−ak = ti− ti−1,

= Cε

(k

∑i=1

(ti− ti−1)1/p∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

= Cε

(k

∑i=1

(b−a

k

)1/p ∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

≤ Cε (b−a)k

(k

∑i=1

∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

=Cε (b−a)

k

(∥∥u′n∥∥

L1([a,b],X)

)p<

η p

10p

if k is chosen large enough. Now consider the first in 21.10.52. By Jensen’s inequality

k

∑i=1

∫ ti

ti−1

ε

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∥∥∥∥p

Edt ≤

k

∑i=1

∫ ti

ti−1

ε1

ti− ti−1

∫ ti

ti−1

∥un (t)−un (s)∥pE dsdt

≤ ε2p−1k

∑i=1

1ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

(∥un (t)∥p +∥un (s)∥p)dsdt

= 2ε2p−1k

∑i=1

∫ ti

ti−1

(∥un (t)∥p)dt = ε (2)(2p−1)∥un∥Lp([a,b],E) ≤Mε

Now pick ε sufficiently small that Mε < η p

10p and then k large enough that the second termin 21.10.52 is also less than η p/10p. Then it will follow that

∥ūn−un∥Lp([a,b],W ) <

(2η p

10p

)1/p

= 21/p η

10≤ η

5

Thus k is fixed and un at a step function with k steps having values in E. Now usecompactness of the embedding of E into W to obtain a subsequence such that {un} isCauchy in Lp ([a,b] ;W ) and use this to contradict 21.10.51. The details follow.

Suppose un (t) = ∑ki=1 un

i X[ti−1,ti) (t) . Thus

||un (t)||E =k

∑i=1||un

i ||E X[ti−1,ti) (t)

and so

R≥∫ b

a||un (t)||pE dt =

Tk

k

∑i=1||un

i ||pE

704 CHAPTER 21. THE BOCHNER INTEGRALSince boa =; —Tti-1,am ‘ f es leca (z/ lata)_ Ce(b—a) a= SEH (uhllesdeaian) < abeif k is chosen large enough. Now consider the first in 21.10.52. By Jensen’s inequalityIAkiiyfiei=l" 4-1LPpdt <E—— | (un(0) an (s))ati —ti-| ti-|kti 1 tiYL as [Mn un llibasari=l | tj —t- 1LIAk . at:7 1 tpte2?! y —— / / ({[utn (t) ||? + ||un (s)||?) dsaetj —ti-1 ti, Ytj-1i=lk t;= ret) | (|lodn (¢) ||”) dt = € (2) 2°") |lelnllzocia.b],e) < MeNow pick € sufficiently small that Me < sie and then k large enough that the second termin 21.10.52 is also less than 7? /10?. Then it will follow that_ — = —_ <lan — Unlleo((a.b).w) < (Gr) 10 =n|3Thus k is fixed and @, at a step function with k steps having values in E. Now usecompactness of the embedding of E into W to obtain a subsequence such that {@,} isCauchy in L? ([a,b]; w) and use this to contradict 21.10.51. The details follow.Suppose @, (t) = YE, uv 7 Air 4;) (t). Thus[in (¢ le = Yelle ian) (1)and so4 zz Pp r : n\|PRe | \imn(Olibae = Y iesp