23.9. THE LERAY SCHAUDER DEGREE 793

Note that this impliesdist(y,(I−Fk)(∂ (Ω∩V )))> 3δ

for any subspace V . If k < l are two such indices, then consider

d(I−Fk|Vk ,Ω∩Vk,y

),d(I−Fl |Vl ,Ω∩Vl ,y

)Are they equal? Let V =Vk +Vl . Then by Theorem 23.8.4,

d(I−Fl |Vl ,Ω∩Vl ,y

)= d (I−Fl |V ,Ω∩V,y)

d(I−Fk|Vk ,Ω∩Vk,y

)= d (I−Fk|V ,Ω∩V,y)

So what about d (I−Fl |V ,Ω∩V,y) ,d (I−Fk|V ,Ω∩V,y)? Are these equal?

supx∈Ω∩V

∥Fl (x)−Fk (x)∥ ≤ supx∈Ω∩V

∥Fl (x)−F (x)∥+ supx∈Ω∩V

∥F (x)−Fk (x)∥< 2δ

This implies forh(x, t) = t (I−Fl)(x)+(1− t)(I−Fk)(x) ,

and x ∈Ω∩V ,y /∈ h(∂ (Ω∩V ) , t) for all t ∈ [0,1]. To see this, let x ∈ ∂Ω

∥t (I−Fl)(x)+(1− t)(I−Fk)(x)− y∥= ∥t (I−Fk)(x)+ t (Fkx−Flx)+(1− t)(I−Fk)(x)− y∥= ∥(I−Fk)(x)+ t (Fkx−Flx)∥ ≥ 3δ − t2δ ≥ δ

Henced (I−Fl |V ,Ω∩V,y) = d (I−Fk|V ,Ω∩V,y)

and solimk→∞

d(I−Fk|Vk ,Ω∩Vk,y

)exists. A similar argument shows that this limit is independent of the sequence {Fk} ofapproximating functions having values in a finite dimensional space. Thus we have thefollowing definition of the Leray Schauder degree.

Definition 23.9.5 Let X be a Banach space and let F : X → X be compact. That is, F (Ω)is precompact whenever Ω is bounded. Let Ω be a bounded open set in X and let y /∈(I−F)(∂Ω). Let Fk be a sequence of operators which have values in finite dimensionalspaces Vk such that Vk ⊆Vk+1 · · · ,y ∈Vk, and limk→∞ supx∈Ω

∥F (x)−Fk (x)∥= 0. Then

D(I−F,Ω,y)≡ limk→∞

d(I−Fk|Vk ,Ω∩Vk,y

)In fact, the sequence on the right is eventually constant. So

D(I−F,Ω,y)≡ d(I−Fk|Vk ,Ω∩Vk,y

)for all k sufficiently large.

23.9. THE LERAY SCHAUDER DEGREE 793Note that this impliesdist (y, (I — F,) (0 (QNV))) > 36for any subspace V. If k < / are two such indices, then considerd (I— Fly, Q0Vi,y) .d (I —Filv,, Q0V),y)Are they equal? Let V = V,+V;. Then by Theorem 23.8.4,d (I~ Fily,,Q0V,y) = 4d (I Filv, Q0V,y)d (I —Fyly,,Q0Vi.y) =d (I — Fly, QNV,y)So what about d (J — Fi|y, QNV,y) ,d (I — Fly, QNV,y)? Are these equal?sup ||Fi (x) —Fe(x)|| < sup ||/Fi(x) -F (a)|| + sup_||F (x) — (x) || < 26x€QNV xeQAV xeQAVThis implies forh(x,t) =tU— Fi) (x) + (1-1) I Fx) (),and x € QNV,y €h(A(QNV),t) for all t € [0, 1]. To see this, let x € OQ\It 7 — Fi) (x) + (1-1) U— Fx) (x) - Jl)= ||t—F) () +t (Aax— Fx) + (1-1) 1 —F) (x) -9 |\|(1 — Fy) (x) +1 (Fx — Fix) || > 36-126 > 5Henced(I—Fily,Qnv,y) =d(I— Fly, QNV,y)and solim d (J —] V, QNVke ( xl k? xs)exists. A similar argument shows that this limit is independent of the sequence {F,} ofapproximating functions having values in a finite dimensional space. Thus we have thefollowing definition of the Leray Schauder degree.Definition 23.9.5 Let X be a Banach space and let F : X — X be compact. That is, F (Q)is precompact whenever Q is bounded. Let Q be a bounded open set in X and let y ¢(I—F) (OQ). Let Fy be a sequence of operators which have values in finite dimensionalspaces V, such that Vx. C Vii +++ 5 © Vg, and limy 5.0 SUP .<G ||F (x) — Fx (x) || = 0. ThenD(I—F,Q,y) = lim d (1 — Fly, Q0Vi,y)—yooIn fact, the sequence on the right is eventually constant. SoD(I—F,Q,y) =d (I= Fy\v,,20Ve.y)for all k sufficiently large.