26.4. EXERCISES 531

26.4 Exercises1. Find the following iterated integrals.

(a)∫ 3−1∫ 2z

0∫ z+1

y (x+ y)dxdydz

(b)∫ 1

0∫ z

0∫ z2

y (y+ z)dxdydz

(c)∫ 3

0∫ x

1∫ 3x−y

2 sin(x)dzdydx

(d)∫ 1

0∫ 2x

x∫ 2y

y dzdydx

(e)∫ 4

2∫ 2x

2∫ x

2y dzdydx

(f)∫ 3

0∫ 2−5x

0∫ 2−x−2y

0 2x dzdydx

(g)∫ 2

0∫ 1−3x

0∫ 3−3x−2y

0 x dzdydx

(h)∫

π

0∫ 3y

0∫ y+z

0 cos(x+ y) dxdzdy

(i)∫

π

0∫ 4y

0∫ y+z

0 sin(x+ y) dxdzdy

2. Fill in the missing limits.∫ 10∫ z

0∫ z

0 f (x,y,z) dxdydz =∫ ?

?∫ ?

?∫ ?

? f (x,y,z) dxdzdy,∫ 10∫ z

0∫ 2z

0 f (x,y,z) dxdydz =∫ ?

?∫ ?

?∫ ?

? f (x,y,z) dydzdx,∫ 10∫ z

0∫ z

0 f (x,y,z) dxdydz =∫ ?

?∫ ?

?∫ ?

? f (x,y,z) dzdydx,∫ 10∫√z

z/2

∫ y+z0 f (x,y,z) dxdydz =

∫ ??∫ ?

?∫ ?

? f (x,y,z) dxdzdy,∫ 64∫ 6

2∫ 4

0 f (x,y,z) dxdydz =∫ ?

?∫ ?

?∫ ?

? f (x,y,z) dzdydx.

3. Find the volume of R where R is the bounded region formed by the plane 15 x+ y+

14 z = 1 and the planes x = 0,y = 0,z = 0.

4. Find the volume of R where R is the bounded region formed by the plane 15 x+ 1

2 y+14 z = 1 and the planes x = 0,y = 0,z = 0.

5. Find the volume of R where R is the bounded region formed by the plane 15 x+ 1

3 y+14 z = 1 and the planes x = 0,y = 0,z = 0.

6. Find the volume of the bounded region determined by 3y+ z = 3,x = 4− y2,y =0,x = 0.

7. Find the volume of the region bounded by x2 + y2 = 16,z = 3x,z = 0, and x ≥ 0.

8. Find the volume of R where R is the bounded region formed by the plane 14 x+ 1

2 y+14 z = 1 and the planes x = 0,y = 0,z = 0.

9. Here is an iterated integral:∫ 3

0∫ 3−x

0∫ x2

0 dzdydx. Write as an iterated integral in thefollowing orders: dzdxdy, dxdzdy, dxdydz, dydxdz, dydzdx.

10. Find the volume of the bounded region determined by 2y+ z = 3,x = 9− y2,y =0,x = 0,z = 0.

11. Find the volume of the bounded region determined by y+ 2z = 3,x = 9− y2,y =0,x = 0.

12. Find the volume of the bounded region determined by y+z = 2,x = 3−y2,y = 0,x =0.

26.4.EXERCISES 53126.4 Exercises1.10.11.12.Find the following iterated integrals.(a) [2 Jo° Jy (ety) dxdydz () fo lo “Jo” 2x dedydx1 pz po(b) fo Jo Jy (v+z)dxdydz (g) (2 si-3 3—3—2y y dcdydx(c) Jo Sx [p°> sin (x) dedydx() fo Se" fy? dedyax(e) fo Ja" iy dedydx (i) J Jo’ Jo’ sin (x+y) dxdzdy(h) fo o> Je cos (x+y) dxdzdyFill in the missing limits.Jo So 5 f (9,2) dxdydz = Jy fy fo’ f (9,2) dxdzdy,Jo Io Jo’ f Gy,2) dxdydz = fy fy fy f (x,y,2) dydzdx,Io So I5 f (9,2) dxdydz = fy fy fo’ f (9,2) dzdydx,fo IN5 at f (x,y,z) dxdydz= fr fr Se f ,y,2) dxdzdy,I? So Sof Gsy,2) dxdydz = fy fr fy f (x,y,z) dedydx.. Find the volume of R where R is the bounded region formed by the plane x+ yt+qz= 1 and the planes x = 0,y = 0,z = 0.Find the volume of R where R is the bounded region formed by the plane 5x + sy +iz= 1 and the planes x = 0,y = 0,z=0.. Find the volume of R where R is the bounded region formed by the plane 5x + sy +i= 1 and the planes x = 0,y = 0,z=0.Find the volume of the bounded region determined by 3y+z=3,x =4—y*,y=0,x=0.Find the volume of the region bounded by x* + y* = 16,z = 3x,z = 0, and x > 0.. Find the volume of R where R is the bounded region formed by the plane 4x + 5 ytqz= 1 and the planes x = 0,y = 0,z = 0.Here is an iterated integral: fo > ~* ia dzdydx. Write as an iterated integral in thefollowing orders: dzdxdy, dxdzdy, dxdydz, dydxdz, dydzdx.Find the volume of the bounded region determined by 2y+ z= 3,x =9—y’,y =0,x =0,z=0.Find the volume of the bounded region determined by y + 2z = 3,x = 9—y’,y =0,x=0.Find the volume of the bounded region determined by y+z=2,x =3—y’,y=0,x=0.