1840 CHAPTER 58. ELLIPTIC FUNCTIONS

Proof: From 58.1.23,

e−iπτ A(τ) = ∑m ̸=0

m ̸=−1

e−iπτ

cos2(π(m+ 1

2

)τ) − e−iπτ

sin2 (π(m+ 1

2

)τ)

Now let τ = a+ ib. Then letting αm = π(m+ 1

2

),

cos(αma+ iαmb) = cos(αma)cosh(αmb)− isinh(αmb)sin(αma)

sin(αma+ iαmb) = sin(αma)cosh(αmb)+ icos(αma)sinh(αmb)

Therefore,∣∣cos2 (αma+ iαmb)∣∣ = cos2 (αma)cosh2 (αmb)+ sinh2 (αmb)sin2 (αma)

≥ sinh2 (αmb) .

Similarly,∣∣sin2 (αma+ iαmb)∣∣ = sin2 (αma)cosh2 (αmb)+ cos2 (αma)sinh2 (αmb)

≥ sinh2 (αmb) .

It follows that for τ = a+ ib and b large∣∣e−iπτ A(τ)∣∣

≤ ∑m ̸=0

m ̸=−1

2eπb

sinh2 (π(m+ 1

2

)b)

≤∞

∑m=1

2eπb

sinh2 (π(m+ 1

2

)b) + −2

∑m=−∞

2eπb

sinh2 (π(m+ 1

2

)b)

= 2∞

∑m=1

2eπb

sinh2 (π(m+ 1

2

)b) = 4

∑m=1

eπb

sinh2 (π(m+ 1

2

)b)

Now a short computation shows

eπb

sinh2(π(m+1+ 12 )b)

eπb

sinh2(π(m+ 12 )b)

=sinh2 (

π(m+ 1

2

)b)

sinh2 (π(m+ 3

2

)b) ≤ 1

e3πb .

Therefore, for τ = a+ ib,∣∣e−iπτ A(τ)∣∣ ≤ 4

eπb

sinh( 3πb

2

) ∞

∑m=1

(1

e3πb

)m

≤ 4eπb

sinh( 3πb

2

) 1/e3πb

1− (1/e3πb)

which converges to zero as b→ ∞. Similar reasoning will establish the claim about B(τ) .This proves the lemma.

1840 CHAPTER 58. ELLIPTIC FUNCTIONSProof: From 58.1.23,e lat e IAT4, cos? ( (m+ 5) T) ~ sin? (a (m+ 5) T)e ATA (7) _~Now let t= a+ ib. Then letting a), = 7 (m + 3) ;COS (OmA+iAmb) = cos(Ona) cosh (Ob) —isinh (Ob) sin (Ona)SiN(OmA+iAmb) = sin(Q@ma) cosh (Ab) +icos (Aa) sinh (Ob)Therefore,|cos? (nat iQmb)| = cos? (ma) cosh? (mb) + sinh? (mb) sin? (Oma)> sinh? (mb).Similarly,sin? (ma) cosh? (mb) + cos” (Oa) sinh? (Ob)> sinh? (Qmb).| sin? (mat iQmb)|It follows that for tT = a+ ib and b large|e'""A (t) |Vem<<X, sink® (a (m+ 5)0)m#-1— Qe™ —2 Jem<~ py sinh? (x (m+ 4) b) +h sinh? ( (m+ 3) b)0) _ e™ oo em=4Am sinh? (2 (m+ 4) b) py sinh? (x (m+ 4) b)Now a short computation showsetsink? ((m+1+4)b) _ sinh” (a(m+3)b) 1= 3et inh2 2sinh? (x(m+4)b) sinh” (m(m-+ 3Therefore, for T= a+ ib,iNT ew . 1 mje""A(t)| < ‘aw 1, (ae)m=11b 3b14 . - 3ab fe 3bsinh (232) 1 —(1/e?7?)which converges to zero as b — oo. Similar reasoning will establish the claim about B(t).This proves the lemma.