58.1. PERIODIC FUNCTIONS 1841
Lemma 58.1.20 limb→∞ λ (a+ ib)e−iπ(a+ib) = 16 uniformly in a ∈ R.
Proof: From 58.1.30 and Lemma 58.1.19, this lemma will be proved if it is shown
limb→∞
(2
cos2(π( 1
2
)(a+ ib)
) − 2sin2 (
π( 1
2
)(a+ ib)
))e−iπ(a+ib) = 16
uniformly in a ∈ R. Let τ = a+ ib to simplify the notation. Then the above expressionequals 8(
ei π2 τ + e−i π
2 τ
)2 +8(
ei π2 τ − e−i π
2 τ
)2
e−iπτ
=
(8eiπτ
(eiπτ +1)2 +8eiπτ
(eiπτ −1)2
)e−iπτ
=8
(eiπτ +1)2 +8
(eiπτ −1)2
= 161+ e2πiτ
(1− e2πiτ)2 .
Now ∣∣∣∣∣ 1+ e2πiτ
(1− e2πiτ)2 −1
∣∣∣∣∣ =
∣∣∣∣∣ 1+ e2πiτ
(1− e2πiτ)2 −(1− e2πiτ
)2
(1− e2πiτ)2
∣∣∣∣∣≤
∣∣3e2πiτ − e4πiτ∣∣
(1− e−2πb)2 ≤
3e−2πb + e−4πb
(1− e−2πb)2
and this estimate proves the lemma.
Corollary 58.1.21 limb→∞ λ (a+ ib) = 0 uniformly in a ∈ R. Also λ (ib) for b > 0 is realand is between 0 and 1, λ is real on the line, l2 and on the curve, C and limb→0+ λ (1+ ib)=−∞.
Proof: From Lemma 58.1.20,∣∣∣λ (a+ ib)e−iπ(a+ib)−16∣∣∣< 1
for all a provided b is large enough. Therefore, for such b,
|λ (a+ ib)| ≤ 17e−πb.
58.1.28 proves the assertion about λ (−bi) real.By the first part, limb→∞ |λ (ib)|= 0. Now from 58.1.24
limb→0+
λ (ib) = limb→0+
(1−λ
(−1ib
))= lim
b→0+
(1−λ
(ib
))= 1. (58.1.31)